Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash.

نویسندگان

  • A V Vener
  • van Kan PJ
  • P R Rich
  • I Ohad
  • B Andersson
چکیده

Redox-controlled phosphorylation of thylakoid membrane proteins represents a unique system for the regulation of light energy utilization in photosynthesis. The molecular mechanisms for this process remain unknown, but current views suggest that the plastoquinone pool directly controls the activation of the kinase. On the basis of enzyme activation by a pH shift in the darkness combined with flash photolysis, EPR, and optical spectroscopy we propose that activation occurs when plastoquinol occupies the quinol-oxidation (Qo) site of the cytochrome bf complex, having its high-potential path components in a reduced state. A linear correlation between kinase activation and accessibility of the Qo site to plastoquinol was established by quantification of the shift in the g(y) EPR signal of the Rieske Fe-S center resulting from displacement of the Qo-site plastoquinol by a quinone analog. Activity persists as long as one plastoquinol per cytochrome bf is still available. Withdrawal of one electron from this plastoquinol after a single-turnover flash exciting photosystem I leads to deactivation of the kinase parallel with a decrease in the g(z) EPR signal of the reduced Rieske Fe-S center. Cytochrome f, plastocyanin, and P(700) are rereduced after the flash, indicating that the plastoquinol at the Qo site is limiting in maintaining the kinase activity. These results give direct evidence for a functional cytochrome bf-kinase interaction, analogous to a signal transduction system where the cytochrome bf is the receptor and the ligand is the plastoquinol at the Qo site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein phosphorylation and redox sensing in chloroplast thylakoids.

Transduction of light dependent signals to redox sensitive kinases in photosynthetic membranes modulates energy transfer to the photochemical reaction centres and regulates biogenesis, stability and turnover of thylakoid protein complexes. The occupancy of the quinol-oxidation site of the cytochrome bf complex by plastoquinol and the redox state of protein thiol groups act as elements of the si...

متن کامل

Regulation of thylakoid protein phosphorylation at the substrate level: reversible light-induced conformational changes expose the phosphorylation site of the light-harvesting complex II.

Light-dependent activation of thylakoid protein phosphorylation regulates the energy distribution between photosystems I and II of oxygen-evolving photosynthetic eukaryotes as well as the turnover of photosystem II proteins. So far the only known effect of light on the phosphorylation process is the redox-dependent regulation of the membrane-bound protein kinase(s) activity via plastoquinol bou...

متن کامل

Dithiol oxidant and disulfide reductant dynamically regulate the phosphorylation of light-harvesting complex II proteins in thylakoid membranes.

Light-induced phosphorylation of light-harvesting chlorophyll a/b complex II (LHCII) proteins in plant thylakoid membranes requires an activation of the LHCII kinase via binding of plastoquinol to cytochrome b(6)f complex. However, a gradual down-regulation of LHCII protein phosphorylation occurs in higher plant leaves in vivo with increasing light intensity. This inhibition is likely to be med...

متن کامل

Role of the cytochrome b6.f complex in the redox-controlled activity of Acetabularia thylakoid protein kinase.

The regulation of the protein kinase activity responsible for the phosphorylation of the light-harvesting complex of photosystem II (LHCII) 27-kDa polypeptide involved in the State I-State II transitions in Acetabularia thylakoids was investigated. The LHCII kinase of isolated thylakoids retains its activity in absence of light-driven electron flow or reductants added in the dark. However, the ...

متن کامل

Sll1717 affects the redox state of the plastoquinone pool by modulating quinol oxidase activity in thylakoids.

A Synechocystis sp. strain PCC 6803 mutant lacking CtaI, a main subunit of cytochrome c oxidase, is not capable of growing at light intensities below 5 micromol photons m(-2) s(-1), presumably due to an overreduced plastoquinone pool in the thylakoid membrane. Upon selection for growth at light intensities below 5 micromol photons m(-2) s(-1), a secondary mutant was generated that retained the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 4  شماره 

صفحات  -

تاریخ انتشار 1997